FAULT TOLERANCE IN CRYPTOGRAPHY USING COVER-FREE FAMILIES

Thais Bardini Idalino Universidade Federal de Santa Catarina, Brazil

Lucia Moura University of Ottawa, Canada

Congreso Latinoamericano de Matemáticos (CLAM) 2021

▲ロト ▲□ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

1/59

OUTLINE

• Cryptography problems with a "all or nothing" solution.

OUTLINE

• Cryptography problems with a "all or nothing" solution.

• Cover-free families to provide fault-tolerance.

	σ_1	σ_2	σ_3	σ_4	σ_5	σ_6
agg1:	1	1	1	0	0	0
agg2:	1	0	0	1	1	0
agg3:	0	1	0	1	0	1
agg4:	0	0	1	0	1	1

▲ロト ▲□ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• Cryptography problems with a "all or nothing" solution.

• Cover-free families to provide fault-tolerance.

	σ_1	σ_2	σ_3	σ_4	σ_5	σ_6
agg1:	1	1	1	0	0	0
agg2:	1	0	0	1	1	0
agg3:	0	1	0	1	0	1
agg4:	0	0	1	0	1	1

• Explore different aspects of cover-free families.

 $\sigma_1 \dots \sigma_{n_1} \dots \sigma_{n_2} \dots \sigma_{n_3} \dots \sigma_{n_4}$ $\boxed{\begin{array}{c} CFF 1 \\ CFF 2 \\ CFF 3 \end{array}} CFF 4$

The problem

<ロト < 部 > < 言 > < 言 > う < つ < 3/59

4/59

5/59

◆□ > ◆□ > ◆三 > ◆三 > 三 - のへで

• Allows Bob to verify that the message was not modified during transmission (**integrity**), and that Alice in fact signed it (**authenticity**).

7/59

What happens when we have thousands of messages and signatures?

Aggregation of signatures

• What happens when we have thousands of msgs/signatures?

¹D. Boneh, C. Gentry, B. Lynn, H. Shacham, Eurocrypt 2003.

< ロ > < 団 > < 臣 > < 臣 > < 臣 > < 臣 < ① < ○ < ○</p>

Aggregation of signatures

• What happens when we have thousands of msgs/signatures?

• Aggregation of signatures, Boneh et al. $(2003)^1$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

¹D. Boneh, C. Gentry, B. Lynn, H. Shacham, Eurocrypt 2003.

AGGREGATION OF SIGNATURES

• Saves on storage, communication and verification time.

10/59

AGGREGATION OF SIGNATURES

• Saves on storage, communication and verification time.

◆ロ → ◆母 → ◆臣 → ◆臣 → ○ ◆ ○ ◆

10/59

Aggregation of signatures

• Saves on storage, communication and verification time.

• Use *d*-cover-free families to provide fault-tolerance.

Cover-free families

	σ_1	σ_2	σ_3	σ_4	σ_5	σ_6
agg1:	1	1	1	0	0	0
agg2:	1	0	0	1	1	0
agg3:	0	1	0	1	0	1
agg4:	0	0	1	0	1	1

< □ > < □ > < 壹 > < Ξ > < Ξ > Ξ の < ⊙ 11/59

COMBINATORIAL GROUP TESTING

Problem: Identify d defective elements from a set of n elements pooled into t groups. **Solution:** Test the t groups, instead of individual elements. **Objective:** Give n, d, minimize t.

COMBINATORIAL GROUP TESTING

Problem: Identify d defective elements from a set of n elements pooled into t groups. **Solution:** Test the t groups, instead of individual elements. **Objective:** Give n, d, minimize t.

• Use a d-CFF(t, n) with t rows and n columns.

Example d = 1 defectives

item	1	2	3	4	5	6	
input:	?	?	?	?	?	?	result:
test1:	1	1	1	0	0	0	?
test2:	1	0	0	1	1	0	?
test3:	0	1	0	1	0	1	?
test4:	0	0	1	0	1	1	?

Defective: item ?

<ロ > < 団 > < 臣 > < 臣 > 王 の Q (* 14/59

Example d = 1 defectives

item	1	2	3	4	5	6		
input:	?	?	?	?	?	?	result:	
test1:	1	1	1	0	0	0	1	Defective: item ?
test2:	1	0	0	1	1	0	0	Delective. Item :
test3:	0	1	0	1	0	1	0	
test4:	0	0	1	0	1	1	1	

<ロ > < 団 > < 臣 > < 臣 > 王 の Q (* 15/59

Example d = 1 defectives

item	1	2	3	4	5	6		
input:	0	0	?	0	0	0	result:	
test1:	1	1	1	0	0	0	1	Defective: item ?
test2:	1	0	0	1	1	0	0	Delective. Item :
test3:	0	1	0	1	0	1	0	
test4:	0	0	1	0	1	1	1	

<ロ > < 団 > < 臣 > < 臣 > 王 の < で 16/59

Example d = 1 defectives

item	1	2	3	4	5	6		
input:	0	0	1	0	0	0	result:	
test1:	1	1	1	0	0	0	1	Defective: item 3
test2:	1	0	0	1	1	0	0	Delective. Item J
test3:	0	1	0	1	0	1	0	
test4:	0	0	1	0	1	1	1	

・ロト ・部・ ・ヨ・ ・ヨ・ うへぐ

17/59

item	1	2	3	4	5	6	7	8	9	10	11	12	
input	?	?	?	?	?	?	?	?	?	?	?	?	result:
t1	1	0	0	1	0	0	1	0	0	1	0	0	?
t2	1	0	0	0	1	0	0	1	0	0	1	0	?
t3	1	0	0	0	0	1	0	0	1	0	0	1	?
t4	0	1	0	1	0	0	0	0	1	0	1	0	?
t5	0	1	0	0	1	0	1	0	0	0	0	1	?
t6	0	1	0	0	0	1	0	1	0	1	0	0	?
t7	0	0	1	1	0	0	0	1	0	0	0	1	?
t8	0	0	1	0	1	0	0	0	1	1	0	0	?
t9	0	0	1	0	0	1	1	0	0	0	1	0	?
					De	fecti	ive:	iten	ns ?				

item	1	2	3	4	5	6	7	8	9	10	11	12	
input	?	?	?	?	?	?	?	?	?	?	?	?	result:
t1	1	0	0	1	0	0	1	0	0	1	0	0	0
t2	1	0	0	0	1	0	0	1	0	0	1	0	0
t3	1	0	0	0	0	1	0	0	1	0	0	1	1
t4	0	1	0	1	0	0	0	0	1	0	1	0	0
t5	0	1	0	0	1	0	1	0	0	0	0	1	1
t6	0	1	0	0	0	1	0	1	0	1	0	0	0
t7	0	0	1	1	0	0	0	1	0	0	0	1	1
t8	0	0	1	0	1	0	0	0	1	1	0	0	1
t9	0	0	1	0	0	1	1	0	0	0	1	0	1
					De	fecti	ive:	iten	ns ?				

item	1	2	3	4	5	6	7	8	9	10	11	12	
input	0	0	?	0	0	0	0	0	0	0	0	?	result:
t1	1	0	0	1	0	0	1	0	0	1	0	0	0
t2	1	0	0	0	1	0	0	1	0	0	1	0	0
t3	1	0	0	0	0	1	0	0	1	0	0	1	1
t4	0	1	0	1	0	0	0	0	1	0	1	0	0
t5	0	1	0	0	1	0	1	0	0	0	0	1	1
t6	0	1	0	0	0	1	0	1	0	1	0	0	0
t7	0	0	1	1	0	0	0	1	0	0	0	1	1
t8	0	0	1	0	1	0	0	0	1	1	0	0	1
t9	0	0	1	0	0	1	1	0	0	0	1	0	1
					De	fecti	ive:	iten	ns ?				

item	1	2	3	4	5	6	7	8	9	10	11	12	
input	0	0	1	0	0	0	0	0	0	0	0	1	result:
t1	1	0	0	1	0	0	1	0	0	1	0	0	0
t2	1	0	0	0	1	0	0	1	0	0	1	0	0
t3	1	0	0	0	0	1	0	0	1	0	0	1	1
t4	0	1	0	1	0	0	0	0	1	0	1	0	0
t5	0	1	0	0	1	0	1	0	0	0	0	1	1
t6	0	1	0	0	0	1	0	1	0	1	0	0	0
t7	0	0	1	1	0	0	0	1	0	0	0	1	1
t8	0	0	1	0	1	0	0	0	1	1	0	0	1
t9	0	0	1	0	0	1	1	0	0	0	1	0	1
				Def	ecti	ve:	item	າs <mark>3</mark>	and	12			

item	1	2	3	4	5	6	7	8	9	10	11	12	Ì
input	0	0	1	0	0	0	0	0	0	0	0	1	result:
t1	1	0	0	1	0	0	1	0	0	1	0	0	0
t2	1	0	0	0	1	0	0	1	0	0	1	0	0
t3	1	0	0	0	0	1	0	0	1	0	0	1	1
t4	0	1	0	1	0	0	0	0	1	0	1	0	0
t5	0	1	0	0	1	0	1	0	0	0	0	1	1
t6	0	1	0	0	0	1	0	1	0	1	0	0	0
t7	0	0	1	1	0	0	0	1	0	0	0	1	1
t8	0	0	1	0	1	0	0	0	1	1	0	0	1
t9	0	0	1	0	0	1	1	0	0	0	1	0	1
				Def	ecti	ve:	item	ıs <mark>3</mark>	and	12			

item	1	2	3	4	5	6	7	8	9	10	11	12	
input	0	0	1	0	0	0	0	0	0	0	0	1	result:
t1		0	0	1	0	0	1	0	0	1	0	0	0
t2	1	0	0	0	1	0	0	1	0	0	1	0	0
t3	1	0	0	0	0	1	0	0	1	0	0	1	1
t4	0	1	0	1	0	0	0	0	1	0	1	0	0
t5	0	1	0	0	1	0	1	0	0	0	0	1	1
t6	0	1	0	0	0	1	0	1	0	1	0	0	0
t7	0	0	1	1	0	0	0	1	0	0	0	1	1
t8	0	0	1	0	1	0	0	0	1	1	0	0	1
t9	0	0	1	0	0	1	1	0	0	0	1	0	1
Defective: items 3 and 12													

item	1	2	3	4	5	6	7	8	9	10	11	12	
input	0	0	1	0	0	0	0	0	0	0	0	1	result:
t1	1	0	0	1	0	0	1	0	0	1	0	0	0
t2	1	0	0	0	1	0	0	1	0	0	1	0	0
t3	1	0	0	0	0	1	0	0	1	0	0	1	1
t4	0		0	1	0	0	0	0	1	0	1	0	0
t5	0	1	0	0	1	0	1	0	0	0	0	1	1
t6	0	1	0	0	0	1	0	1	0	1	0	0	0
t7	0	0	1	1	0	0	0	1	0	0	0	1	1
t8	0	0	1	0	1	0	0	0	1	1	0	0	1
t9	0	0	1	0	0	1	1	0	0	0	1	0	1
Defective: items 3 and 12													

item	1	2	3	4	5	6	7	8	9	10	11	12	
input	0	0	1	0	0	0	0	0	0	0	0	1	result:
t1	1	0	0		0	0	1	0	0	1	0	0	0
t2	1	0	0	0	1	0	0	1	0	0	1	0	0
t3	1	0	0	0	0	1	0	0	1	0	0	1	1
t4	0	1	0	1	0	0	0	0	1	0	1	0	0
t5	0	1	0	0	1	0	1	0	0	0	0	1	1
t6	0	1	0	0	0	1	0	1	0	1	0	0	0
t7	0	0	1	1	0	0	0	1	0	0	0	1	1
t8	0	0	1	0	1	0	0	0	1	1	0	0	1
t9	0	0	1	0	0	1	1	0	0	0	1	0	1
Defective: items 3 and 12													

item	1	2 <mark>3</mark>	4	5	6	7	8	9	10	11	12	
input	0	0 1	0	0	0	0	0	0	0	0	1	result:
t1	1	0 0		0	0	1	0	0	1	0	0	0
t2	1	0 0	0	1	0	0	1	0	0	1	0	0
t3	1	0 0	0	0	1	0	0	1	0	0		1
t4	0	1 0	1	0	0	0	0	1	0	1	0	0
t5	0	1 0	0	1	0	1	0	0	0	0	1	1
t6	0	1 0	0	0	1	0	1	0	1	0	0	0
t7	0	0 1	1	0	0	0	1	0	0	0	1	1
t8	0	0 (1	0	1	0	0	0	1	1	0	0	1
t9	0	0 1	0	0	1	1	0	0	0	1	0	1
Defective: items 3 and 12												

Example d = 2 defectives

A d-CFF(t, n) is a $t \times n$ binary matrix where every set of d+1 columns contains a permutation submatrix of order d+1.

26/59

€ 990

CFFs and group testing

Using a *d*-cover-free family, no matter where the defectives are...

we can identify all good items.

(as long as we have at most d defectives)

<ロ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Cover-free families with d = 1

When d = 1:

- no column is covered by any other
- no subset contains any other
- Sperner set systems

item	1	2	3	4	5	6
test1:	1	1	1	0	0	0
test2:	1	0	0	1	1	0
test3:	0	1	0	1	0	1
test4:	0	0	1	0	1	1

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Cover-free families with d = 1

When d = 1:

- Given *n*, choose $t = \min\{s : \binom{s}{|s/2|} \ge n\}$.
- List the collection of all the $\lfloor t/2 \rfloor$ -subsets of $\{1, \ldots, t\}$.

Example n = 6, t = 4, d = 12-subsets of $\{1, 2, 3, 4\}$: $\{\{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}\}$

item	1	2	3	4	5	6
test1:	1	1	1	0	0	0
test2:	1	0	0	1	1	0
test3:	0	1	0	1	0	1
test4:	0	0	1	0	1	1

29/59
COVER-FREE FAMILIES

- Minimize t for given n and d.
 - Lower bound for $d \ge 2$: $t \ge c \frac{d^2}{\log d} \log n$.²
- For d = 1:
 - Sperner system.
 - $t \sim \log n$.
- For general d:
 - Direct construction from finite fields, codes, SHF, OAs, etc.

• Probabilistic construction with $t = \Theta((d+1)^2 \ln n)$.

²Z. Füredi. On *r*-Cover-free Families. Journal of Combinatorial Theory, 1996.

RECALL OUR PROBLEM

• Traditional aggregation of signatures

 3 T. B. Idalino. Using combinatorial group testing to solve integrity issues. Master's thesis, 2015.

・ロ・・ 中下・ ・ 中下・ ・ 日・

⁴G. Hartung, B. Kaidel, A. Koch, J. Koch, A. Rupp, PKC 2016.

RECALL OUR PROBLEM

• Traditional aggregation of signatures

• One invalid signature invalidates the entire aggregate.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

⁴G. Hartung, B. Kaidel, A. Koch, J. Koch, A. Rupp, PKC 2016.

 $^{{}^{3}}$ T. B. Idalino. Using combinatorial group testing to solve integrity issues. Master's thesis, 2015.

RECALL OUR PROBLEM

• Traditional aggregation of signatures

• One invalid signature invalidates the entire aggregate.

• Use *d*-CFFs to provide fault-tolerance. 3,4

 3 T. B. Idalino. Using combinatorial group testing to solve integrity issues. Master's thesis, 2015.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

⁴G. Hartung, B. Kaidel, A. Koch, J. Koch, A. Rupp, PKC 2016.

FAULT TOLERANCE WITH d-CFFs

- *n* = number of signatures
- $d = \max$ number of invalid signatures.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

FAULT TOLERANCE WITH d-CFFs

- *n* = number of signatures
- $d = \max$ number of invalid signatures.

	σ_1	σ_2	σ_3	σ_4	σ_5	σ_6	
agg 1:	1	1	1	0	0	0	$\sigma^*[1] = \mathbf{Agg}(\sigma_1, \sigma_2, \sigma_3)$
agg 2:	1	0	0	1	1	0	$\sigma^*[2] = \mathbf{Agg}(\sigma_1, \sigma_4, \sigma_5)$
agg 3:	0	1	0	1	0	1	$\sigma^*[3] = \mathbf{Agg}(\sigma_2, \sigma_4, \sigma_6)$
agg 4:	0	0	1	0	1	1	$\sigma^*[4] = \mathbf{Agg}(\sigma_3, \sigma_5, \sigma_6)$

FAULT TOLERANCE WITH d-CFFs

AggVerify(
$$\sigma^{*}[1], m_{1}, m_{2}, m_{3}$$
) X
AggVerify($\sigma^{*}[2], m_{1}, m_{4}, m_{5}$) V
AggVerify($\sigma^{*}[3], m_{2}, m_{4}, m_{6}$) V
AggVerify($\sigma^{*}[4], m_{3}, m_{5}, m_{6}$) X

	σ_1	σ_2	σ_3	σ_4	σ_5	σ_6	result:
agg 1:	1	1	1	0	0	0	Х
agg 2:	1	0	0	1	1	0	\checkmark
agg 3:	0	1	0	1	0	1	\checkmark
agg 4:	0	0	1	0	1	1	Х

Invalid signature: σ_3

33/59

▲ロ → ▲ □ → ▲ □ → ▲ □ → ▲ □ → ▲ □ → ▲ □ → ▲ □ → ▲ □ → ▲ □ →

FAULT-TOLERANCE WITH D-CFFS PROBLEM

• Before: dynamically aggregate signatures as they arrive.

$$\sigma_1 \swarrow \phi_2 \swarrow \phi_1 \cdots \sigma_n \checkmark \phi_1$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

FAULT-TOLERANCE WITH D-CFFS PROBLEM

• Before: dynamically aggregate signatures as they arrive.

• Now: the number of signatures is bounded by *n*.

	σ_1	σ_2	σ_3	σ_4	σ_5	σ_6
agg 1:	1	1	1	0	0	0
agg 2:	1	0	0	1	1	0
agg 3:	0	1	0	1	0	1
agg 4:	0	0	1	0	1	1

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□

FAULT-TOLERANCE WITH D-CFFS PROBLEM

• Before: dynamically aggregate signatures as they arrive.

• Now: the number of signatures is bounded by *n*.

	σ_1	σ_2	σ_3	σ_4	σ_5	σ_6
agg 1:	1	1	1	0	0	0
agg 2:	1	0	0	1	1	0
agg 3:	0	1	0	1	0	1
agg 4:	0	0	1	0	1	1

• Impractical for applications where signatures are dynamically arriving.

How to make the number of signatures dynamic and still guarantee a reasonable size for the aggregate signature?

< □ > < □ > < 三 > < 三 > < 三 > < 三 > < ○ < 35/59

• **Problem:** Fault-tolerant aggregation of signatures with unknown *n*.

- **Problem:** Fault-tolerant aggregation of signatures with unknown *n*.
- **Solution:** Increase the *d*-CFF to hold extra signatures.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- **Problem:** Fault-tolerant aggregation of signatures with unknown *n*.
- Solution: Increase the *d*-CFF to hold extra signatures.
- Create a special sequence of *d*-CFF matrices.

- **Problem:** Fault-tolerant aggregation of signatures with unknown *n*.
- Solution: Increase the *d*-CFF to hold extra signatures.
- Create a special sequence of *d*-CFF matrices.
 - Large matrices contain small matrices.

◆□ > ◆□ > ◆臣 > ◆臣 > ○ = - のへで

σ*[t4]

- **Problem:** Fault-tolerant aggregation of signatures with unknown *n*.
- Solution: Increase the *d*-CFF to hold extra signatures.
- Create a special sequence of *d*-CFF matrices.
 - Large matrices contain small matrices.
 - Avoid using unavailable signatures in the new aggregates.

$$\overset{\sigma^{\dagger}[1]}{\underset{\sigma^{\bullet}[1]}{\overset{\sigma^$$

•*(2) •*(5) •*(4) •*(4) •*(4) •*(5) •*(6) •*(7) •*(7) •CFF 2 CFF 3 CFF 4

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

COMPRESSION RATIO

• Compression ratio: $\rho(n)$ iff $\frac{n}{t}$ is $\Theta(\rho(n))$

COMPRESSION RATIO

- Compression ratio: $\rho(n)$ iff $\frac{n}{t}$ is $\Theta(\rho(n))$
 - number of signatures/size of the aggregate signature.

COMPRESSION RATIO

- Compression ratio: $\rho(n)$ iff $\frac{n}{t}$ is $\Theta(\rho(n))$
 - number of signatures/size of the aggregate signature.
- The larger $\rho(n)$ the better.

Compression Ratio

- Compression ratio: $\rho(n)$ iff $\frac{n}{t}$ is $\Theta(\rho(n))$
 - number of signatures/size of the aggregate signature.
- The larger $\rho(n)$ the better.
- $\rho(n)$ depends on d.

 $\sigma_1 \ldots \sigma_{n_1} \ldots \sigma_{n_2} \ldots \sigma_{n_3} \ldots \sigma_{n_4}$

Compression Ratio

• Compression ratio: $\rho(n)$ iff $\frac{n}{t}$ is $\Theta(\rho(n))$

• Traditional aggregation:

$$\rho(n) = n \implies t = 1, d = 0.$$

$$\frac{\text{item} | 1 \ 2 \ 3 \ 4 \ 5 \ 6}{| \text{agg 1} | 1 \ 1 \ 1 \ 1 \ 1 \ 1}$$

• No aggregation:

• Fault-tolerant aggregation: $\rho(n) \leq \frac{n}{\frac{d^2}{\log d} \log n}$.

MONOTONE FAMILY

- Solution with Monotone families ⁵
- Avoid using unavailable signatures in new aggregates with 0 rows.

$$\mathcal{M}^{(l+1)} = \begin{pmatrix} \mathcal{M}^{(l)} & Y \\ 0 & W \end{pmatrix}$$

$$\begin{bmatrix}
0 & \dots & 0 \\
0 & \dots & 0 \\
0 & \dots & 0
\end{bmatrix}$$

・ロト ・ 日 ・ ・ 田 ・ ・ 田 ・ ・ 日 ・ うへぐ

 σ_1 , σ_m , σ_m , σ_m , σ_m

⁵G. Hartung, B. Kaidel, A. Koch, J. Koch, A. Rupp, PKC 2016.

MONOTONE FAMILY

- Solution with Monotone families ⁵
- Avoid using unavailable signatures in new aggregates with 0 rows.

$$\mathcal{M}^{(l+1)} = \begin{pmatrix} \mathcal{M}^{(l)} & Y \\ 0 & W \end{pmatrix}$$

$$\begin{bmatrix}
0 & \dots & 0 \\
0 & \dots & 0 \\
0 & \dots & 0
\end{bmatrix}$$

 σ_1 , σ_m , σ_m , σ_m , σ_m

- Compression ratio: $\rho(n) = 1$ (number of rows is linear in n).
- Solved unbounded problem but impractical (constant ratio).

⁵G. Hartung, B. Kaidel, A. Koch, J. Koch, A. Rupp, PKC 2016.

Our contribution:

- We define a more flexible family of matrices: nested families. ⁶
- Z has rows of 0's, 1's, and repeated rows from $\mathcal{M}^{(I)}$.

$$\mathcal{M}^{(l+1)} = \begin{pmatrix} \mathcal{M}^{(l)} & Y \\ Z & W \end{pmatrix} \xrightarrow{\text{Rows of 0's}}_{\text{Repeated rows}} \left\{ \begin{array}{c} \sigma_1 \dots \sigma_{n_1} \dots \sigma_{n_2} \dots \sigma_{n_3} \dots \sigma_{n_4} \\ \\ \end{array} \right.$$

⁶T. B. Idalino, L. Moura, TCS 2021.

Row of 0's: $\sigma^*[k]$ is a regular aggregation.

< □ > < □ > < 壹 > < 壹 > < Ξ > ○ < ♡ < ○ 41/59

Row of 1's:

- Keep one extra aggregation $\sigma^*[0] = Agg(\sigma_i, \ldots, \sigma_{n_i});$
- then $\sigma^*[k] = Agg(\sigma^*[0], \text{new signatures}).$

Repeated row r: $\sigma^*[k] = Agg(\sigma^*[r], \text{new signatures})$.

4 ロ ト 4 母 ト 4 差 ト 4 差 ト 差 の 4 (%)
43/59

- We need constructions for nested families, with good increasing compression ratio
- Proposed 3 different constructions for d = 1 and general d

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Case d = 1:

• Based on Sperner set systems.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト …

3

Case d = 1:

• Based on Sperner set systems.

• We increase t as necessary and fill the matrix accordingly.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□

45/59

• $\rho(n) = \frac{n}{\log_2 n} \rightarrow$ meets the upper bound.

General *d* (Construction 1):

KRONECKER PRODUCT

 $d\text{-}CFF(t_1,n_1)\otimes d\text{-}CFF(t_2,n_2)=d\text{-}CFF(t_1\times t_2,n_1\times n_2)$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

General *d* (Construction 1):

KRONECKER PRODUCT

 $d\text{-}CFF(t_1, n_1) \otimes d\text{-}CFF(t_2, n_2) = d\text{-}CFF(t_1 \times t_2, n_1 \times n_2)$

4 日 > 4 回 > 4 目 > 4 目 > 目 の 4 で

General *d* (Construction 1):

ITERATING THE STEP

Iterating the step we get a nested family with

$$\rho(n) = \frac{n}{n^{1/c}} = n^{1-1/c}$$

<ロ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

General *d* (Construction 2):

 $\begin{array}{l} (d-1)\text{-}\mathsf{CFF}(s,n_2)\otimes d\text{-}\mathsf{CFF}(t_1,n_1)) \text{ plus } d\text{-}\mathsf{CFF}(t_2,n_2) \\ = d\text{-}\mathsf{CFF}(s\times t_1+t_2,n_2\times n_1) \end{array}$

<ロ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

General *d* (Construction 2):

$$\begin{array}{l} (d-1)\text{-}\mathsf{CFF}(s,n_2)\otimes d\text{-}\mathsf{CFF}(t_1,n_1)) \text{ plus } d\text{-}\mathsf{CFF}(t_2,n_2) \\ = d\text{-}\mathsf{CFF}(s\times t_1+t_2,n_2\times n_1) \end{array}$$

General d (Construction 2):

ITERATING THE STEP

Iterating the step (in a specific way) we get a nested family with

$$\rho(n) = \frac{n}{(b \log_2 n)^{\log_2 \log_2 n + D}}.$$
SUMMARY OF RESULTS

With Nested families:

- Make fault-tolerant aggregation of signatures more practical.
 - Allow increase on the number *n* of signatures.
 - Reasonable aggregate signature size.

d	$\rho(n)$	Construction
0	n	Traditional
1	$\frac{n}{\log_2 n}$	Sperner
d	$\frac{n}{n^{1/c}}$	Construction 1
d	$\frac{n}{(b\log_2 n)^{\log_2 \log_2 n+D}}$	Construction 2
d	1	Hartung et al. ⁷

⁷G. Hartung, B. Kaidel, A. Koch, J. Koch, A. Rupp, PKC 2016.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Increases in *n* may increase *d* too.
- Nested and monotone families do not allow increases on d.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

53/59

• Application in broadcast encryption and authentication.

Embedding Cover-Free Families

- Generalization of monotone and nested: embedding families.⁸
- Constructions based on polynomials over finite fields and extension fields.

⁸T. B. Idalino, L. Moura, Mathematics of Communications, 2019.

≡ • ● ٩ (~

CONCLUSION

Different applications require different properties of CFFs.

- Explore dynamic applications with increasing n and d.
- Good compression ratios.

	d	n
d-CFFs	fixed	fixed
Monotone	fixed	increasing
Nested	fixed	increasing
Embedding	increasing	increasing

FUTURE WORK

- Constructions with better compression ratio.
- Compression ratio bounds on monotone and nested families $(d \ge 2)$.

56/59

•
$$\rho(n) \leq \frac{n}{\frac{d^2}{\log d} \log n}$$

- Other aspects of CFFs to be explored.
 - Mixed properties and applications.

thais.bardini@ufsc.br

<ロ>< □> < □> < □> < 三> < 三> < 三> < 三 < ○< (○) 57/59

References I

- D. Boneh, C. Gentry, B. Lynn, H. Shacham, Aggregate and verifiably encrypted signatures from bilinear maps, in EUROCRYPT 2003.
- [2] D. Du, F. Hwang. *Combinatorial group testing and its applications*. In World Scientific, 2000.
- [3] G. Hartung, B. Kaidel, A. Koch, J. Koch, A. Rupp. Fault-Tolerant Aggregate Signatures. In Public-Key Cryptography – PKC 2016, pages 331–356, 2016.
- [4] T.B. Idalino. Using combinatorial group testing to solve integrity issues. Master's thesis, 2015.
- [5] T.B. Idalino and L. Moura, Efficient Unbounded Fault-Tolerant Aggregate Signatures Using Nested Cover-Free Families, in Lecture Notes in Computer Science, IWOCA 2018.

References II

- [6] T.B. Idalino and L. Moura, *Embedding sequences of cover-free families and cryptographical applications*. Advances in Mathematics of Communications, 2019.
- [7] P. C. Li, G. H. J. van Rees, R. Wei. Constructions of 2-cover-free families and related separating hash families. in Journal of Combinatorial Designs, 2006.
- [8] E. Sperner. *Ein Satz über Untermengen einer endlichen Menge.* in Mathematische Zeitschrift, 1928.