
Fault tolerance in cryptography
using cover-free families

Thais Bardini Idalino
Universidade Federal de Santa Catarina, Brazil

Lucia Moura
University of Ottawa, Canada

Congreso Latinoamericano de Matemáticos (CLAM) 2021

1/59

Outline

Cryptography problems with a “all or nothing” solution.

...
✗

✔

Cover-free families to provide fault-tolerance.
σ1 σ2 σ3 σ4 σ5 σ6

agg1: 1 1 1 0 0 0
agg2: 1 0 0 1 1 0
agg3: 0 1 0 1 0 1
agg4: 0 0 1 0 1 1

Explore different aspects of cover-free families.

2/59

Outline

Cryptography problems with a “all or nothing” solution.

...
✗

✔

Cover-free families to provide fault-tolerance.
σ1 σ2 σ3 σ4 σ5 σ6

agg1: 1 1 1 0 0 0
agg2: 1 0 0 1 1 0
agg3: 0 1 0 1 0 1
agg4: 0 0 1 0 1 1

Explore different aspects of cover-free families.

2/59

Outline

Cryptography problems with a “all or nothing” solution.

...
✗

✔

Cover-free families to provide fault-tolerance.
σ1 σ2 σ3 σ4 σ5 σ6

agg1: 1 1 1 0 0 0
agg2: 1 0 0 1 1 0
agg3: 0 1 0 1 0 1
agg4: 0 0 1 0 1 1

Explore different aspects of cover-free families.

2/59

The problem

...
✗

✔

3/59

Digital signatures

4/59

Digital signatures

Hi Bob,
how
are
you?

5/59

Digital signatures

Public key
Private key

Hi Bob,
how
are
you?

Hi Bob,
how
are
you?

6/59

Digital signatures

Public key
Private key

✗

✔

Hi Bob,
how
are
you?

Hi Bob,
how
are
you?

Hi Bob,
how
are
you?

Allows Bob to verify that the message was not modified during
transmission (integrity), and that Alice in fact signed it
(authenticity).

7/59

Digital signatures

Public key
Private key

✗

✔

Hi Bob,
how
are
you?

Hi Bob,
how
are
you?

Hi Bob,
how
are
you?

Allows Bob to verify that the message was not modified during
transmission (integrity), and that Alice in fact signed it
(authenticity).

7/59

Digital Signatures

What happens when we have thousands of messages and
signatures?

8/59

Aggregation of signatures

What happens when we have thousands of msgs/signatures?

...

Aggregation of signatures, Boneh et al. (2003)1.

...

...

1D. Boneh, C. Gentry, B. Lynn, H. Shacham, Eurocrypt 2003.

9/59

Aggregation of signatures

What happens when we have thousands of msgs/signatures?

...

Aggregation of signatures, Boneh et al. (2003)1.

...

...

1D. Boneh, C. Gentry, B. Lynn, H. Shacham, Eurocrypt 2003.

9/59

Aggregation of signatures

Saves on storage, communication and verification time.

...

✔

One invalid signature invalidates the entire aggregate.

...

✗

Use d-cover-free families to provide fault-tolerance.

10/59

Aggregation of signatures

Saves on storage, communication and verification time.

...

✔

One invalid signature invalidates the entire aggregate.

...

✗

Use d-cover-free families to provide fault-tolerance.

10/59

Aggregation of signatures

Saves on storage, communication and verification time.

...

✔

One invalid signature invalidates the entire aggregate.

...

✗

Use d-cover-free families to provide fault-tolerance.

10/59

Cover-free families

σ1 σ2 σ3 σ4 σ5 σ6
agg1: 1 1 1 0 0 0
agg2: 1 0 0 1 1 0
agg3: 0 1 0 1 0 1
agg4: 0 0 1 0 1 1

11/59

Cover-free families

Combinatorial group testing

Problem: Identify d defective elements from a set of n elements
pooled into t groups.
Solution: Test the t groups, instead of individual elements.
Objective: Give n, d , minimize t.

1 2 3 4 5 6

Test 1 Test 2 Test 3 Test 4

fail fail pass pass

12/59

Cover-free families

Combinatorial group testing

Problem: Identify d defective elements from a set of n elements
pooled into t groups.
Solution: Test the t groups, instead of individual elements.
Objective: Give n, d , minimize t.

Use a d-CFF(t, n) with t rows and n columns.

1 2 3 4 5 6

Test 1 Test 2 Test 3 Test 4

fail fail pass pass

test1
test2
test3
test4

1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

1-CFF(4,6) Matrix
 1 2 3 4 5 6

13/59

Cover-free families: 1-CFF(t, n)

Example d = 1 defectives

item 1 2 3 4 5 6

input: ? ? ? ? ? ? result:

test1: 1 1 1 0 0 0 ?
test2: 1 0 0 1 1 0 ?
test3: 0 1 0 1 0 1 ?
test4: 0 0 1 0 1 1 ?

Defective: item ?

14/59

Cover-free families: 1-CFF(t, n)

Example d = 1 defectives

item 1 2 3 4 5 6

input: ? ? ? ? ? ? result:

test1: 1 1 1 0 0 0 1
test2: 1 0 0 1 1 0 0
test3: 0 1 0 1 0 1 0
test4: 0 0 1 0 1 1 1

Defective: item ?

15/59

Cover-free families: 1-CFF(t, n)

Example d = 1 defectives

item 1 2 3 4 5 6

input: 0 0 ? 0 0 0 result:

test1: 1 1 1 0 0 0 1
test2: 1 0 0 1 1 0 0
test3: 0 1 0 1 0 1 0
test4: 0 0 1 0 1 1 1

Defective: item ?

16/59

Cover-free families: 1-CFF(t, n)

Example d = 1 defectives

item 1 2 3 4 5 6

input: 0 0 1 0 0 0 result:

test1: 1 1 1 0 0 0 1
test2: 1 0 0 1 1 0 0
test3: 0 1 0 1 0 1 0
test4: 0 0 1 0 1 1 1

Defective: item 3

17/59

Cover-free families: 2-CFF(t, n)

Example d = 2 defectives

item 1 2 3 4 5 6 7 8 9 10 11 12

input ? ? ? ? ? ? ? ? ? ? ? ? result:

t1 1 0 0 1 0 0 1 0 0 1 0 0 ?
t2 1 0 0 0 1 0 0 1 0 0 1 0 ?
t3 1 0 0 0 0 1 0 0 1 0 0 1 ?
t4 0 1 0 1 0 0 0 0 1 0 1 0 ?
t5 0 1 0 0 1 0 1 0 0 0 0 1 ?
t6 0 1 0 0 0 1 0 1 0 1 0 0 ?
t7 0 0 1 1 0 0 0 1 0 0 0 1 ?
t8 0 0 1 0 1 0 0 0 1 1 0 0 ?
t9 0 0 1 0 0 1 1 0 0 0 1 0 ?

Defective: items ?

18/59

Cover-free families: 2-CFF(t, n)

Example d = 2 defectives

item 1 2 3 4 5 6 7 8 9 10 11 12

input ? ? ? ? ? ? ? ? ? ? ? ? result:

t1 1 0 0 1 0 0 1 0 0 1 0 0 0
t2 1 0 0 0 1 0 0 1 0 0 1 0 0
t3 1 0 0 0 0 1 0 0 1 0 0 1 1
t4 0 1 0 1 0 0 0 0 1 0 1 0 0
t5 0 1 0 0 1 0 1 0 0 0 0 1 1
t6 0 1 0 0 0 1 0 1 0 1 0 0 0
t7 0 0 1 1 0 0 0 1 0 0 0 1 1
t8 0 0 1 0 1 0 0 0 1 1 0 0 1
t9 0 0 1 0 0 1 1 0 0 0 1 0 1

Defective: items ?

19/59

Cover-free families: 2-CFF(t, n)

Example d = 2 defectives

item 1 2 3 4 5 6 7 8 9 10 11 12

input 0 0 ? 0 0 0 0 0 0 0 0 ? result:

t1 1 0 0 1 0 0 1 0 0 1 0 0 0
t2 1 0 0 0 1 0 0 1 0 0 1 0 0
t3 1 0 0 0 0 1 0 0 1 0 0 1 1
t4 0 1 0 1 0 0 0 0 1 0 1 0 0
t5 0 1 0 0 1 0 1 0 0 0 0 1 1
t6 0 1 0 0 0 1 0 1 0 1 0 0 0
t7 0 0 1 1 0 0 0 1 0 0 0 1 1
t8 0 0 1 0 1 0 0 0 1 1 0 0 1
t9 0 0 1 0 0 1 1 0 0 0 1 0 1

Defective: items ?

20/59

Cover-free families: 2-CFF(t, n)

Example d = 2 defectives

item 1 2 3 4 5 6 7 8 9 10 11 12

input 0 0 1 0 0 0 0 0 0 0 0 1 result:

t1 1 0 0 1 0 0 1 0 0 1 0 0 0
t2 1 0 0 0 1 0 0 1 0 0 1 0 0
t3 1 0 0 0 0 1 0 0 1 0 0 1 1
t4 0 1 0 1 0 0 0 0 1 0 1 0 0
t5 0 1 0 0 1 0 1 0 0 0 0 1 1
t6 0 1 0 0 0 1 0 1 0 1 0 0 0
t7 0 0 1 1 0 0 0 1 0 0 0 1 1
t8 0 0 1 0 1 0 0 0 1 1 0 0 1
t9 0 0 1 0 0 1 1 0 0 0 1 0 1

Defective: items 3 and 12

21/59

Cover-free families: d-CFF(t, n)

Example d = 2 defectives

22/59

Cover-free families: d-CFF(t, n)

Example d = 2 defectives

23/59

Cover-free families: d-CFF(t, n)

Example d = 2 defectives

24/59

Cover-free families: d-CFF(t, n)

Example d = 2 defectives

25/59

Cover-free families: d-CFF(t, n)

Example d = 2 defectives

A d-CFF(t, n) is a t × n binary matrix where every set of d + 1
columns contains a permutation submatrix of order d + 1.

26/59

Cover-free families: d-CFF(t, n)

Example d = 2 defectives

A d-CFF(t, n) is a t × n binary matrix where every set of d + 1
columns contains a permutation submatrix of order d + 1.

26/59

CFFs and group testing

Using a d-cover-free family, no matter where the defectives are...

c c1 , . . . , cd
.
.
.
.
.
. . 1 . . 0 0 0 0 . . .
.
.
.
.

we can identify all good items.
(as long as we have at most d defectives)

27/59

Cover-free families with d = 1

When d = 1:

no column is covered by any other

no subset contains any other

Sperner set systems

item 1 2 3 4 5 6

test1: 1 1 1 0 0 0
test2: 1 0 0 1 1 0
test3: 0 1 0 1 0 1
test4: 0 0 1 0 1 1

28/59

Cover-free families with d = 1

When d = 1:

Given n, choose t = min{s :
(s
bs/2c

)
≥ n}.

List the collection of all the bt/2c-subsets of {1, . . . , t}.

Example n = 6, t = 4, d = 1
2-subsets of {1, 2, 3, 4}: {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}

item 1 2 3 4 5 6
test1: 1 1 1 0 0 0
test2: 1 0 0 1 1 0
test3: 0 1 0 1 0 1
test4: 0 0 1 0 1 1

29/59

Cover-free families

Minimize t for given n and d .

Lower bound for d ≥ 2: t ≥ c d2

log d log n. 2

For d = 1:

Sperner system.
t ∼ log n.

For general d :

Direct construction from finite fields, codes, SHF, OAs, etc.
Probabilistic construction with t = Θ((d + 1)2 ln n).

2Z. Füredi. On r -Cover-free Families. Journal of Combinatorial Theory,
1996.

30/59

Recall our problem

Traditional aggregation of signatures

One invalid signature invalidates the entire aggregate.

...

✗

Use d-CFFs to provide fault-tolerance. 3,4

3T. B. Idalino. Using combinatorial group testing to solve integrity issues.
Master’s thesis, 2015.

4G. Hartung, B. Kaidel, A. Koch, J. Koch, A. Rupp, PKC 2016.

31/59

Recall our problem

Traditional aggregation of signatures

One invalid signature invalidates the entire aggregate.

...

✗

Use d-CFFs to provide fault-tolerance. 3,4

3T. B. Idalino. Using combinatorial group testing to solve integrity issues.
Master’s thesis, 2015.

4G. Hartung, B. Kaidel, A. Koch, J. Koch, A. Rupp, PKC 2016.

31/59

Recall our problem

Traditional aggregation of signatures

One invalid signature invalidates the entire aggregate.

...

✗

Use d-CFFs to provide fault-tolerance. 3,4

3T. B. Idalino. Using combinatorial group testing to solve integrity issues.
Master’s thesis, 2015.

4G. Hartung, B. Kaidel, A. Koch, J. Koch, A. Rupp, PKC 2016.

31/59

Fault tolerance with d-CFFs

n = number of signatures

d = max number of invalid signatures.

σ1 σ2 σ3 σ4 σ5 σ6
agg 1: 1 1 1 0 0 0
agg 2: 1 0 0 1 1 0
agg 3: 0 1 0 1 0 1
agg 4: 0 0 1 0 1 1

σ∗[1] = Agg(σ1, σ2, σ3)
σ∗[2] = Agg(σ1, σ4, σ5)
σ∗[3] = Agg(σ2, σ4, σ6)
σ∗[4] = Agg(σ3, σ5, σ6)

32/59

Fault tolerance with d-CFFs

n = number of signatures

d = max number of invalid signatures.

σ1 σ2 σ3 σ4 σ5 σ6
agg 1: 1 1 1 0 0 0
agg 2: 1 0 0 1 1 0
agg 3: 0 1 0 1 0 1
agg 4: 0 0 1 0 1 1

σ∗[1] = Agg(σ1, σ2, σ3)
σ∗[2] = Agg(σ1, σ4, σ5)
σ∗[3] = Agg(σ2, σ4, σ6)
σ∗[4] = Agg(σ3, σ5, σ6)

32/59

Fault tolerance with d-CFFs

AggVerify(σ∗[1],m1,m2,m3) X
AggVerify(σ∗[2],m1,m4,m5) X
AggVerify(σ∗[3],m2,m4,m6) X
AggVerify(σ∗[4],m3,m5,m6) X

σ1 σ2 σ3 σ4 σ5 σ6 result:

agg 1: 1 1 1 0 0 0 X
agg 2: 1 0 0 1 1 0 X
agg 3: 0 1 0 1 0 1 X
agg 4: 0 0 1 0 1 1 X

Invalid signature: σ3

33/59

Fault-tolerance with d-CFFs
Problem

Before: dynamically aggregate signatures as they arrive.

Now: the number of signatures is bounded by n.

σ1 σ2 σ3 σ4 σ5 σ6

agg 1: 1 1 1 0 0 0
agg 2: 1 0 0 1 1 0
agg 3: 0 1 0 1 0 1
agg 4: 0 0 1 0 1 1

Impractical for applications where signatures are dynamically
arriving.

34/59

Fault-tolerance with d-CFFs
Problem

Before: dynamically aggregate signatures as they arrive.

Now: the number of signatures is bounded by n.

σ1 σ2 σ3 σ4 σ5 σ6

agg 1: 1 1 1 0 0 0
agg 2: 1 0 0 1 1 0
agg 3: 0 1 0 1 0 1
agg 4: 0 0 1 0 1 1

Impractical for applications where signatures are dynamically
arriving.

34/59

Fault-tolerance with d-CFFs
Problem

Before: dynamically aggregate signatures as they arrive.

Now: the number of signatures is bounded by n.

σ1 σ2 σ3 σ4 σ5 σ6

agg 1: 1 1 1 0 0 0
agg 2: 1 0 0 1 1 0
agg 3: 0 1 0 1 0 1
agg 4: 0 0 1 0 1 1

Impractical for applications where signatures are dynamically
arriving.

34/59

Question

How to make the number of signatures dynamic
and still guarantee a reasonable size for the

aggregate signature?

35/59

Unbounded aggregation of signatures

Problem: Fault-tolerant aggregation of signatures with
unknown n.

Solution: Increase the d-CFF to hold extra signatures.

Create a special sequence of d-CFF matrices.

Large matrices contain small matrices.
Avoid using unavailable signatures in the new aggregates.

36/59

Unbounded aggregation of signatures

Problem: Fault-tolerant aggregation of signatures with
unknown n.

Solution: Increase the d-CFF to hold extra signatures.

Create a special sequence of d-CFF matrices.

Large matrices contain small matrices.
Avoid using unavailable signatures in the new aggregates.

36/59

Unbounded aggregation of signatures

Problem: Fault-tolerant aggregation of signatures with
unknown n.

Solution: Increase the d-CFF to hold extra signatures.

Create a special sequence of d-CFF matrices.

Large matrices contain small matrices.
Avoid using unavailable signatures in the new aggregates.

36/59

Unbounded aggregation of signatures

Problem: Fault-tolerant aggregation of signatures with
unknown n.

Solution: Increase the d-CFF to hold extra signatures.

Create a special sequence of d-CFF matrices.

Large matrices contain small matrices.

Avoid using unavailable signatures in the new aggregates.

36/59

Unbounded aggregation of signatures

Problem: Fault-tolerant aggregation of signatures with
unknown n.

Solution: Increase the d-CFF to hold extra signatures.

Create a special sequence of d-CFF matrices.

Large matrices contain small matrices.
Avoid using unavailable signatures in the new aggregates.

36/59

Compression Ratio

Compression ratio: ρ(n) iff n
t is Θ(ρ(n))

number of signatures/size of the aggregate signature.

The larger ρ(n) the better.

ρ(n) depends on d .

37/59

Compression Ratio

Compression ratio: ρ(n) iff n
t is Θ(ρ(n))

number of signatures/size of the aggregate signature.

The larger ρ(n) the better.

ρ(n) depends on d .

37/59

Compression Ratio

Compression ratio: ρ(n) iff n
t is Θ(ρ(n))

number of signatures/size of the aggregate signature.

The larger ρ(n) the better.

ρ(n) depends on d .

37/59

Compression Ratio

Compression ratio: ρ(n) iff n
t is Θ(ρ(n))

number of signatures/size of the aggregate signature.

The larger ρ(n) the better.

ρ(n) depends on d .

37/59

Compression Ratio

Compression ratio: ρ(n) iff n
t is Θ(ρ(n))

Traditional aggregation:
ρ(n) = n =⇒ t = 1, d = 0.

item 1 2 3 4 5 6

agg 1 1 1 1 1 1 1

No aggregation:
ρ = 1 =⇒ t = n, d = n

item 1 2 3 4 5 6

agg 1 1 0 0 0 0 0
agg 2 0 1 0 0 0 0
...

...
agg 6 0 0 0 0 0 1

Fault-tolerant aggregation: ρ(n) ≤ n
d2

log d
log n

.

38/59

Monotone family

Solution with Monotone families 5

Avoid using unavailable signatures in new aggregates with 0
rows.

M(l+1) =

(
M(l) Y

0 W

)

Compression ratio: ρ(n) = 1 (number of rows is linear in n).

Solved unbounded problem but impractical (constant ratio).

5G. Hartung, B. Kaidel, A. Koch, J. Koch, A. Rupp, PKC 2016.

39/59

Monotone family

Solution with Monotone families 5

Avoid using unavailable signatures in new aggregates with 0
rows.

M(l+1) =

(
M(l) Y

0 W

)

Compression ratio: ρ(n) = 1 (number of rows is linear in n).

Solved unbounded problem but impractical (constant ratio).

5G. Hartung, B. Kaidel, A. Koch, J. Koch, A. Rupp, PKC 2016.

39/59

Nested family
Definition

Our contribution:

We define a more flexible family of matrices: nested families. 6

Z has rows of 0’s, 1’s, and repeated rows from M(l).

M(l+1) =

(
M(l) Y
Z W

)

6T. B. Idalino, L. Moura, TCS 2021.

40/59

Nested family
Definition

CFF i

CFF i+1

…. ….

0 0 … 0

Row of 0’s: σ∗[k] is a regular aggregation.

41/59

Nested family
Definition

CFF i

CFF i+1

…. ….

1 1 … 1

Row of 1’s:

Keep one extra aggregation σ∗[0] = Agg(σi , . . . , σni);

then σ∗[k] = Agg(σ∗[0], new signatures).

42/59

Nested family
Definition

CFF i

CFF i+1

…. ….

1 0 1 0 0 1 1 1 0 0 1 0

1 0 1 0 0 1 1 1 0 0 1 0

Repeated row r : σ∗[k] = Agg(σ∗[r], new signatures).

43/59

Nested family
Construction

We need constructions for nested families, with good
increasing compression ratio

Proposed 3 different constructions for d = 1 and general d

44/59

Nested family
Construction

Case d = 1:

Based on Sperner set systems.

test1
test2
test3

1-CFF(6,20) Matrix

1 1 1 0 0 0 1 0 0 0 1 1 1 1 1 1 0 0 0 0
1 0 0 1 1 0 0 1 0 0 1 1 1 0 0 0 1 1 1 0
0 1 0 1 0 1 0 0 1 0 1 0 0 1 1 0 1 1 0 1
0 0 1 0 1 1 0 0 0 1 0 1 0 1 0 1 1 0 1 1
0 0 0 0 0 0 1 1 1 1 0 0 1 0 1 1 0 1 1 1
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

test4
test5
test6

We increase t as necessary and fill the matrix accordingly.

ρ(n) = n
log2 n

→ meets the upper bound.

45/59

Nested family
Construction

Case d = 1:

Based on Sperner set systems.

test1
test2
test3

1-CFF(6,20) Matrix

1 1 1 0 0 0 1 0 0 0 1 1 1 1 1 1 0 0 0 0
1 0 0 1 1 0 0 1 0 0 1 1 1 0 0 0 1 1 1 0
0 1 0 1 0 1 0 0 1 0 1 0 0 1 1 0 1 1 0 1
0 0 1 0 1 1 0 0 0 1 0 1 0 1 0 1 1 0 1 1
0 0 0 0 0 0 1 1 1 1 0 0 1 0 1 1 0 1 1 1
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

test4
test5
test6

We increase t as necessary and fill the matrix accordingly.

ρ(n) = n
log2 n

→ meets the upper bound.

45/59

Nested family
Construction

General d (Construction 1):

Kronecker Product

d-CFF (t1, n1)⊗ d-CFF (t2, n2) = d-CFF (t1 × t2, n1 × n2)

46/59

Nested family - constructions

General d (Construction 1):

Kronecker Product

d-CFF (t1, n1)⊗ d-CFF (t2, n2) = d-CFF (t1 × t2, n1 × n2)

47/59

Nested family - constructions

General d (Construction 1):

Iterating the Step

Iterating the step we get a nested family with

ρ(n) =
n

n1/c
= n1−1/c .

48/59

Nested family - constructions

General d (Construction 2):

(d − 1)-CFF(s, n2)⊗ d-CFF(t1, n1)) plus d-CFF(t2, n2)
= d-CFF(s × t1 + t2, n2 × n1)

49/59

Nested family - constructions

General d (Construction 2):

(d − 1)-CFF(s, n2)⊗ d-CFF(t1, n1)) plus d-CFF(t2, n2)
= d-CFF(s × t1 + t2, n2 × n1)

50/59

Nested family - constructions

General d (Construction 2):

Iterating the Step

Iterating the step (in a specific way) we get a nested family with

ρ(n) =
n

(b log2 n)log2 log2 n+D
.

51/59

Summary of results

With Nested families:

Make fault-tolerant aggregation of signatures more practical.

Allow increase on the number n of signatures.
Reasonable aggregate signature size.

d ρ(n) Construction
0 n Traditional

1 n
log2 n

Sperner

d n
n1/c

Construction 1

d n
(b log2 n)

log2 log2 n+D Construction 2

d 1 Hartung et al. 7

7G. Hartung, B. Kaidel, A. Koch, J. Koch, A. Rupp, PKC 2016.

52/59

What else?

Increases in n may increase d too.

Nested and monotone families do not allow increases on d .

Application in broadcast encryption and authentication.

53/59

Embedding Cover-Free Families

Generalization of monotone and nested: embedding families.8

Constructions based on polynomials over finite fields and
extension fields.

Fq

Fq2

Fq4

Fq8

 up to degree k0 up to degree k1
...

(Fq,,Fq)
(Fq2,Fq2)

.

.

.

8T. B. Idalino, L. Moura, Mathematics of Communications, 2019.

54/59

Conclusion

Different applications require different properties of CFFs.

Explore dynamic applications with increasing n and d .

Good compression ratios.

d n

d-CFFs fixed fixed
Monotone fixed increasing
Nested fixed increasing
Embedding increasing increasing

55/59

Future Work

Constructions with better compression ratio.

Compression ratio bounds on monotone and nested families
(d ≥ 2).

ρ(n) ≤ n
d2

log d log n

Other aspects of CFFs to be explored.

Mixed properties and applications.

56/59

thais.bardini@ufsc.br

57/59

References I

[1] D. Boneh, C. Gentry, B. Lynn, H. Shacham, Aggregate and
verifiably encrypted signatures from bilinear maps, in
EUROCRYPT 2003.

[2] D. Du, F. Hwang. Combinatorial group testing and its
applications. In World Scientific, 2000.

[3] G. Hartung, B. Kaidel, A. Koch, J. Koch, A. Rupp.
Fault-Tolerant Aggregate Signatures. In Public-Key
Cryptography – PKC 2016, pages 331–356, 2016.

[4] T.B. Idalino. Using combinatorial group testing to solve
integrity issues. Master’s thesis, 2015.

[5] T.B. Idalino and L. Moura, Efficient Unbounded Fault-Tolerant
Aggregate Signatures Using Nested Cover-Free Families, in
Lecture Notes in Computer Science, IWOCA 2018.

58/59

References II

[6] T.B. Idalino and L. Moura, Embedding sequences of cover-free
families and cryptographical applications. Advances in
Mathematics of Communications, 2019.

[7] P. C. Li, G. H. J. van Rees, R. Wei. Constructions of
2-cover-free families and related separating hash families. in
Journal of Combinatorial Designs, 2006.

[8] E. Sperner. Ein Satz über Untermengen einer endlichen Menge.
in Mathematische Zeitschrift, 1928.

59/59

	Introduction
	Digital signatures

	Constructions
	Unbounded constructions
	Monotone families
	Nested families

	Conclusion
	Conclusion

