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Outline

Cryptography problems with a “all or nothing” solution.

...
✗

✔

Cover-free families to provide fault-tolerance.
σ1 σ2 σ3 σ4 σ5 σ6

agg1: 1 1 1 0 0 0
agg2: 1 0 0 1 1 0
agg3: 0 1 0 1 0 1
agg4: 0 0 1 0 1 1

Explore different aspects of cover-free families.
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The problem

...
✗

✔
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Digital signatures
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Digital signatures

Hi Bob, 
how 
are 
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Digital Signatures

What happens when we have thousands of messages and
signatures?
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Aggregation of signatures

What happens when we have thousands of msgs/signatures?

...

Aggregation of signatures, Boneh et al. (2003)1.

...

...

1D. Boneh, C. Gentry, B. Lynn, H. Shacham, Eurocrypt 2003.
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Aggregation of signatures

Saves on storage, communication and verification time.

...

✔

One invalid signature invalidates the entire aggregate.

...

✗

Use d-cover-free families to provide fault-tolerance.
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Cover-free families

σ1 σ2 σ3 σ4 σ5 σ6
agg1: 1 1 1 0 0 0
agg2: 1 0 0 1 1 0
agg3: 0 1 0 1 0 1
agg4: 0 0 1 0 1 1
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Cover-free families

Combinatorial group testing

Problem: Identify d defective elements from a set of n elements
pooled into t groups.
Solution: Test the t groups, instead of individual elements.
Objective: Give n, d , minimize t.

1     2     3     4     5    6    

Test 1 Test 2 Test 3 Test 4

fail fail pass pass
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Cover-free families

Combinatorial group testing

Problem: Identify d defective elements from a set of n elements
pooled into t groups.
Solution: Test the t groups, instead of individual elements.
Objective: Give n, d , minimize t.

Use a d-CFF(t, n) with t rows and n columns.

1     2     3     4     5    6    

Test 1 Test 2 Test 3 Test 4

fail fail pass pass

test1
test2
test3
test4

1   1   1   0   0   0 
1   0   0   1   1   0
0   1   0   1   0   1
0   0   1   0   1   1

1-CFF(4,6) Matrix 
 1     2     3    4     5     6 
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Cover-free families: 1-CFF(t, n)

Example d = 1 defectives

item 1 2 3 4 5 6

input: ? ? ? ? ? ? result:

test1: 1 1 1 0 0 0 ?
test2: 1 0 0 1 1 0 ?
test3: 0 1 0 1 0 1 ?
test4: 0 0 1 0 1 1 ?

Defective: item ?
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Cover-free families: 1-CFF(t, n)

Example d = 1 defectives

item 1 2 3 4 5 6

input: 0 0 ? 0 0 0 result:

test1: 1 1 1 0 0 0 1
test2: 1 0 0 1 1 0 0
test3: 0 1 0 1 0 1 0
test4: 0 0 1 0 1 1 1

Defective: item ?
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Cover-free families: 1-CFF(t, n)

Example d = 1 defectives

item 1 2 3 4 5 6

input: 0 0 1 0 0 0 result:

test1: 1 1 1 0 0 0 1
test2: 1 0 0 1 1 0 0
test3: 0 1 0 1 0 1 0
test4: 0 0 1 0 1 1 1

Defective: item 3
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Cover-free families: 2-CFF(t, n)

Example d = 2 defectives

item 1 2 3 4 5 6 7 8 9 10 11 12

input ? ? ? ? ? ? ? ? ? ? ? ? result:

t1 1 0 0 1 0 0 1 0 0 1 0 0 ?
t2 1 0 0 0 1 0 0 1 0 0 1 0 ?
t3 1 0 0 0 0 1 0 0 1 0 0 1 ?
t4 0 1 0 1 0 0 0 0 1 0 1 0 ?
t5 0 1 0 0 1 0 1 0 0 0 0 1 ?
t6 0 1 0 0 0 1 0 1 0 1 0 0 ?
t7 0 0 1 1 0 0 0 1 0 0 0 1 ?
t8 0 0 1 0 1 0 0 0 1 1 0 0 ?
t9 0 0 1 0 0 1 1 0 0 0 1 0 ?

Defective: items ?
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t6 0 1 0 0 0 1 0 1 0 1 0 0 0
t7 0 0 1 1 0 0 0 1 0 0 0 1 1
t8 0 0 1 0 1 0 0 0 1 1 0 0 1
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Cover-free families: 2-CFF(t, n)

Example d = 2 defectives

item 1 2 3 4 5 6 7 8 9 10 11 12

input 0 0 1 0 0 0 0 0 0 0 0 1 result:

t1 1 0 0 1 0 0 1 0 0 1 0 0 0
t2 1 0 0 0 1 0 0 1 0 0 1 0 0
t3 1 0 0 0 0 1 0 0 1 0 0 1 1
t4 0 1 0 1 0 0 0 0 1 0 1 0 0
t5 0 1 0 0 1 0 1 0 0 0 0 1 1
t6 0 1 0 0 0 1 0 1 0 1 0 0 0
t7 0 0 1 1 0 0 0 1 0 0 0 1 1
t8 0 0 1 0 1 0 0 0 1 1 0 0 1
t9 0 0 1 0 0 1 1 0 0 0 1 0 1

Defective: items 3 and 12
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Cover-free families: d-CFF(t, n)

Example d = 2 defectives
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Cover-free families: d-CFF(t, n)

Example d = 2 defectives

A d-CFF(t, n) is a t × n binary matrix where every set of d + 1
columns contains a permutation submatrix of order d + 1.
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CFFs and group testing

Using a d-cover-free family, no matter where the defectives are...

c c1 , . . . , cd
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . 1 . . 0 0 0 0 . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .

we can identify all good items.
(as long as we have at most d defectives)
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Cover-free families with d = 1

When d = 1:

no column is covered by any other

no subset contains any other

Sperner set systems

item 1 2 3 4 5 6

test1: 1 1 1 0 0 0
test2: 1 0 0 1 1 0
test3: 0 1 0 1 0 1
test4: 0 0 1 0 1 1
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Cover-free families with d = 1

When d = 1:

Given n, choose t = min{s :
( s
bs/2c

)
≥ n}.

List the collection of all the bt/2c-subsets of {1, . . . , t}.

Example n = 6, t = 4, d = 1
2-subsets of {1, 2, 3, 4}: {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}

item 1 2 3 4 5 6
test1: 1 1 1 0 0 0
test2: 1 0 0 1 1 0
test3: 0 1 0 1 0 1
test4: 0 0 1 0 1 1
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Cover-free families

Minimize t for given n and d .

Lower bound for d ≥ 2: t ≥ c d2

log d log n. 2

For d = 1:

Sperner system.
t ∼ log n.

For general d :

Direct construction from finite fields, codes, SHF, OAs, etc.
Probabilistic construction with t = Θ((d + 1)2 ln n).

2Z. Füredi. On r -Cover-free Families. Journal of Combinatorial Theory,
1996.
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Recall our problem

Traditional aggregation of signatures

One invalid signature invalidates the entire aggregate.

...

✗

Use d-CFFs to provide fault-tolerance. 3,4

3T. B. Idalino. Using combinatorial group testing to solve integrity issues.
Master’s thesis, 2015.

4G. Hartung, B. Kaidel, A. Koch, J. Koch, A. Rupp, PKC 2016.
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Fault tolerance with d-CFFs

n = number of signatures

d = max number of invalid signatures.

σ1 σ2 σ3 σ4 σ5 σ6
agg 1: 1 1 1 0 0 0
agg 2: 1 0 0 1 1 0
agg 3: 0 1 0 1 0 1
agg 4: 0 0 1 0 1 1

σ∗[1] = Agg(σ1, σ2, σ3)
σ∗[2] = Agg(σ1, σ4, σ5)
σ∗[3] = Agg(σ2, σ4, σ6)
σ∗[4] = Agg(σ3, σ5, σ6)
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Fault tolerance with d-CFFs

AggVerify(σ∗[1],m1,m2,m3) X
AggVerify(σ∗[2],m1,m4,m5) X
AggVerify(σ∗[3],m2,m4,m6) X
AggVerify(σ∗[4],m3,m5,m6) X

σ1 σ2 σ3 σ4 σ5 σ6 result:

agg 1: 1 1 1 0 0 0 X
agg 2: 1 0 0 1 1 0 X
agg 3: 0 1 0 1 0 1 X
agg 4: 0 0 1 0 1 1 X

Invalid signature: σ3
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Fault-tolerance with d-CFFs
Problem

Before: dynamically aggregate signatures as they arrive.

Now: the number of signatures is bounded by n.

σ1 σ2 σ3 σ4 σ5 σ6

agg 1: 1 1 1 0 0 0
agg 2: 1 0 0 1 1 0
agg 3: 0 1 0 1 0 1
agg 4: 0 0 1 0 1 1

Impractical for applications where signatures are dynamically
arriving.
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Question

How to make the number of signatures dynamic
and still guarantee a reasonable size for the

aggregate signature?
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Unbounded aggregation of signatures

Problem: Fault-tolerant aggregation of signatures with
unknown n.

Solution: Increase the d-CFF to hold extra signatures.

Create a special sequence of d-CFF matrices.

Large matrices contain small matrices.
Avoid using unavailable signatures in the new aggregates.
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Compression Ratio

Compression ratio: ρ(n) iff n
t is Θ(ρ(n))

number of signatures/size of the aggregate signature.

The larger ρ(n) the better.

ρ(n) depends on d .
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Compression Ratio

Compression ratio: ρ(n) iff n
t is Θ(ρ(n))

Traditional aggregation:
ρ(n) = n =⇒ t = 1, d = 0.

item 1 2 3 4 5 6

agg 1 1 1 1 1 1 1

No aggregation:
ρ = 1 =⇒ t = n, d = n

item 1 2 3 4 5 6

agg 1 1 0 0 0 0 0
agg 2 0 1 0 0 0 0
...

...
agg 6 0 0 0 0 0 1

Fault-tolerant aggregation: ρ(n) ≤ n
d2

log d
log n

.
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Monotone family

Solution with Monotone families 5

Avoid using unavailable signatures in new aggregates with 0
rows.

M(l+1) =

(
M(l) Y

0 W

)

Compression ratio: ρ(n) = 1 (number of rows is linear in n).

Solved unbounded problem but impractical (constant ratio).

5G. Hartung, B. Kaidel, A. Koch, J. Koch, A. Rupp, PKC 2016.
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Nested family
Definition

Our contribution:

We define a more flexible family of matrices: nested families. 6

Z has rows of 0’s, 1’s, and repeated rows from M(l).

M(l+1) =

(
M(l) Y
Z W

)

6T. B. Idalino, L. Moura, TCS 2021.
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Nested family
Definition

CFF i

CFF i+1

…. ….

0 0           …              0

Row of 0’s: σ∗[k] is a regular aggregation.
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Nested family
Definition

CFF i

CFF i+1

…. ….

1 1          …              1

Row of 1’s:

Keep one extra aggregation σ∗[0] = Agg(σi , . . . , σni );

then σ∗[k] = Agg(σ∗[0], new signatures).
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Nested family
Definition

CFF i

CFF i+1

…. ….

1 0 1 0 0 1 1 1 0 0 1 0

1 0 1 0 0 1 1 1 0 0 1 0

Repeated row r : σ∗[k] = Agg(σ∗[r ], new signatures).
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Nested family
Construction

We need constructions for nested families, with good
increasing compression ratio

Proposed 3 different constructions for d = 1 and general d
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Nested family
Construction

Case d = 1:

Based on Sperner set systems.

test1
test2
test3

1-CFF(6,20) Matrix

1   1   1   0   0   0   1   0   0   0   1   1   1   1   1   1   0   0   0   0
1   0   0   1   1   0   0   1   0   0   1   1   1   0   0   0   1   1   1   0
0   1   0   1   0   1   0   0   1   0   1   0   0   1   1   0   1   1   0   1
0   0   1   0   1   1   0   0   0   1   0   1   0   1   0   1   1   0   1   1
0   0   0   0   0   0   1   1   1   1   0   0   1   0   1   1   0   1   1   1
1   1   1   1   1   1   1   1   1   1   0   0   0   0   0   0   0   0   0   0

      1    2    3   4    5    6    7    8    9   10  11  12  13 14  15 16  17  18  19  20  

test4
test5
test6

We increase t as necessary and fill the matrix accordingly.

ρ(n) = n
log2 n

→ meets the upper bound.
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Nested family
Construction

General d (Construction 1):

Kronecker Product

d-CFF (t1, n1)⊗ d-CFF (t2, n2) = d-CFF (t1 × t2, n1 × n2)
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Nested family - constructions

General d (Construction 1):

Iterating the Step

Iterating the step we get a nested family with

ρ(n) =
n

n1/c
= n1−1/c .
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Nested family - constructions

General d (Construction 2):

(d − 1)-CFF(s, n2)⊗ d-CFF(t1, n1)) plus d-CFF(t2, n2)
= d-CFF(s × t1 + t2, n2 × n1)
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Nested family - constructions

General d (Construction 2):

(d − 1)-CFF(s, n2)⊗ d-CFF(t1, n1)) plus d-CFF(t2, n2)
= d-CFF(s × t1 + t2, n2 × n1)

50/59



Nested family - constructions

General d (Construction 2):

Iterating the Step

Iterating the step (in a specific way) we get a nested family with

ρ(n) =
n

(b log2 n)log2 log2 n+D
.
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Summary of results

With Nested families:

Make fault-tolerant aggregation of signatures more practical.

Allow increase on the number n of signatures.
Reasonable aggregate signature size.

d ρ(n) Construction
0 n Traditional

1 n
log2 n

Sperner

d n
n1/c

Construction 1

d n
(b log2 n)

log2 log2 n+D Construction 2

d 1 Hartung et al. 7

7G. Hartung, B. Kaidel, A. Koch, J. Koch, A. Rupp, PKC 2016.
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What else?

Increases in n may increase d too.

Nested and monotone families do not allow increases on d .

Application in broadcast encryption and authentication.
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Embedding Cover-Free Families

Generalization of monotone and nested: embedding families.8

Constructions based on polynomials over finite fields and
extension fields.

Fq

Fq2

Fq4

Fq8

  up to degree k0   up to degree k1
...

(Fq,,Fq)
(Fq2,Fq2)

.

.

.

8T. B. Idalino, L. Moura, Mathematics of Communications, 2019.
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Conclusion

Different applications require different properties of CFFs.

Explore dynamic applications with increasing n and d .

Good compression ratios.

d n

d-CFFs fixed fixed
Monotone fixed increasing
Nested fixed increasing
Embedding increasing increasing
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Future Work

Constructions with better compression ratio.

Compression ratio bounds on monotone and nested families
(d ≥ 2).

ρ(n) ≤ n
d2

log d log n

Other aspects of CFFs to be explored.

Mixed properties and applications.
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