Embedding Cover-Free Families

Thaís Bardini Idalino

Departamento de Informática e Estatística Universidade Federal de Santa Catarina

IV Workshop on Finite Fields and Applications

Undergrad

Tópicos Especiais em Computação III: Corpos Finitos e Aplicações à Teoria de Códigos e Criptografia

2013

2015

Masters

Research meetings & paper

PhD

Comprehensive exam committee
PhD proposal committee

Today

Collaboration with students' research

Embedding Cover-Free Families

Thaís Bardini Idalino

Departamento de Informática e Estatística Universidade Federal de Santa Catarina

IV Workshop on Finite Fields and Applications

Combinatorial Group Testing

Combinatorial Group Testing

Combinatorial Group Testing

d - CFF(t, n)

No element is *covered* by the union of any other *d*.

2 - CFF(9, 12)

2 - CFF(9, 12)

Definition: Let d be a positive integer. A d-cover-free family, denoted d - CFF(t, n), is a set system $\mathscr{F} = (X, \mathscr{B})$ with |X| = t and $|\mathscr{B}| = n$ such that for any d + 1 subsets $B_{i_0}, B_{i_1}, \ldots, B_{i_d} \in \mathscr{B}$, we have:

$$\left| B_{i_0} \setminus \left(\bigcup_{j=1}^d B_{i_j} \right) \right| \geq 1.$$

No element is *covered* by the union of any other d.

^{*} Equivalent to disjunct matrices and superimposed codes.

Constructions of d-CFFs

- When d = 1 we can use Sperner set systems, where t grows as $\log_2 n$ as $n \to \infty$;
- For $d \ge 2$, the best known **lower bound** on t for d-CFF(t, n) is given by

$$t \ge c \frac{d^2}{\log d} \log n$$

for some constant c;

- Constructions based on Latin squares, OAs, PHFs, CAs, Codes, probabilistic algorithms, etc.
- Constructions based on polynomials over finite fields.

In this talk

- Applications of cover-free families in cryptography
- Cover-free families for dynamic applications
- Embedding cover-free families with *Finite Fields*
- Open problems

Applications in cryptography

Fault-tolerant Digital Signatures

- Fault-tolerant digital signatures
 - Idalino, Moura, Custodio, Panario (2015), Idalino, Moura, Adams, (2019)
- Fault-tolerance in aggregation of signatures
 - Zaverucha, Stinson (2010). Idalino (2015). Hartung, Kaidel, Koch, Koch, Rupp (2016). Idalino, Moura (2018, 2021)
- Fault-tolerance in batch verification
 - Pastuszak, Pieprzyk (2000). Zaverucha, Stinson (2009).

Post-quantum one-time and multiple-times signature schemes

• Pieprzyk, Wang, Xing (2003). Zaverucha and Stinson, (2011). Kalach and Safavi-Naini (2016).

- Key distribution patterns
 - Mitchell and Piper (1988)
- Broadcast authentication
 - Safavi-Naini and Wang (1998) . Ling, Wang, Xing (2007).
- Broadcast encryption
 - Gafni, Staddon, Yin (1999). D'Arco and Stinson (2003)
- Traitor Tracing
 - Stinson and Wei (1998). Tonien and Safavi-Naini (2006)
- and many many others...

Applications in cryptography

Fault-tolerant Digital Signatures

- Fault-tolerant digital signatures
 - Idalino, Moura, Custodio, Panario (2015), Idalino, Moura, Adams, (2019)
- Fault-tolerance in aggregation of signatures
 - Zaverucha, Stinson (2010). Idalino (2015). Hartung, Kaidel, Koch, Koch, Rupp (2016). Idalino, Moura (2018, 2021)
- Fault-tolerance in batch verification
 - Pastuszak, Pieprzyk (2000). Zaverucha, Stinson (2009).

Post-quantum one-time and multiple-times signature schemes

• Pieprzyk, Wang, Xing (2003). Zaverucha and Stinson, (2011). Kalach and Safavi-Naini (2016).

Key distribution

- Key distribution patterns
 - Mitchell and Piper (1988)
- Broadcast authentication
 - Safavi-Naini and Wang (1998) . Ling, Wang, Xing (2007).
- Broadcast encryption
 - Gafni, Staddon, Yin (1999). D'Arco and Stinson (2003)
- Traitor Tracing
 - Stinson and Wei (1998). Tonien and Safavi-Naini (2006)
- and many many others...

More applications and details:

Digital Signatures

Integrity and authenticity of digital documents

Digital Signatures

Aggregation of signatures

Digital Signatures

Aggregation of signatures

Digital Signatures

- Identify invalid digital signatures for batch verification and aggregation of signatures.
 - Zaverucha, Stinson (2010). Idalino (2015). Hartung, Kaidel, Koch, Koch, Rupp (2016). Idalino, Moura (2018, 2021).

Applications in Cryptography Key Distribution

- Broadcast encryption:
 - server broadcasts encrypted content
 - all active subscribers should be able to decrypt it

Applications in Cryptography Key Distribution

- Broadcast encryption:
 - server broadcasts encrypted content
 - only active subscribers should be able to decrypt it

Applications in Cryptography Key Distribution

- Broadcast encryption:
 - server broadcasts encrypted content
 - only active subscribers should be able to decrypt it

- Broadcast encryption:
 - server broadcasts encrypted content
 - only active subscribers should be able to decrypt it

- Tolerance to "bad" participants with less keys.
 - Safavi-Naini and Wang (1998). Gafni, Staddon, Yin (1999). D'Arco and Stinson (2003).

- Tolerance to "bad" participants with less keys.
 - Safavi-Naini and Wang (1998). Gafni, Staddon, Yin (1999). D'Arco and Stinson (2003).

- Tolerance to "bad" participants with less keys.
 - Safavi-Naini and Wang (1998). Gafni, Staddon, Yin (1999). D'Arco and Stinson (2003).

1	1	1	0	0	0
1	0	0	1	1	0
0	1	0	1	0	1
0	0	1	0	1	1

1	1	1	0	0	0	
1	0	0	1	1	0	
0	1	0	1	0	1	
0	0	1	0	1	1	

1	1	1	0	0	0
1	0	0	1	1	0
0	1	0	1	0	1
0	0	1	0	1	1

1	1	1	0	0	0	
1	0	0	1	1	0	
0	1	0	1	0	1	
0	0	1	0	1	1	

We need unbounded CFFs!

Approaches

- Unbounded approaches
 - Monotone (Hartung et al., 2016)
 - Nested (Idalino, Moura, 2018, 2021)
 - Embedding (Idalino, Moura, 2019)
- Compression Ratio: $\rho(n)$ iff n/t is $\Theta(\rho(n))$

Monotone Families

- Allows increase of *n* with fixed *d*.
- Rows of 0 required for aggregation of signatures.
- $\rho(n) = 1$ (number of rows is linear in n).

Nested Families

- Allows increase of *n* with fixed *d*.
- Applicable to aggregation of signatures.
- More flexible construction.
- Constructions with increasing compression ratio.

Embedding Families

- Increase of both *n* and *d*.
- Application in key distribution, etc.
- Construction of embedding families using polynomials over finite fields.

	d	n
d-CFFs	fixed	fixed
Monotone	fixed	increasing
Nested	fixed	increasing
Embedding	increasing	increasing

Theorem (E, F, F 1985*): Let q be a prime power and k be a positive integer. If $q \ge dk + 1$ then there exists a d-CFF (q^2, q^{k+1}) .

^{*} P. Erdős, P. Frankl and Z. Furedi, Families of finite sets in which no set is covered by the union of r others, Israel J. Math., 51 (1985), 79–89.

Theorem (E, F, F 1985*): Let q be a prime power and k be a positive integer. If $q \ge dk + 1$ then there exists a d-CFF (q^2, q^{k+1}) .

^{*} P. Erdős, P. Frankl and Z. Furedi, Families of finite sets in which no set is covered by the union of r others, Israel J. Math., 51 (1985), 79–89.

Why is this a d-CFF (q^2, q^{k+1}) ?

- Any two columns will be in at most k tests together.
- The union of *d* columns will be in at most *dk* tests together with any other column.
 - Recall that each column has q 1's and $q \ge dk + 1$.
 - Therefore, no column is covered by the union of *d* others.

Theorem (E, F, F 1985*): Let q be a prime power and k be a positive integer. If $q \ge dk + 1$ then there exists a d-CFF (q^2, q^{k+1}) .

Obs.: We only need q^2 rows when we are interested in the max d. For smaller values of d we need t = (dk + 1)q

How can we build embedding CFFs?

Construction

- ullet Start with \mathbb{F}_q and grow the construction with extension fields.
 - Tower of finite fields.

Construction

- Start with prime power q;
- consider a sequence of extension fields $\mathbb{F}_{q^{2i}}$, with $i \geq 0$;
 - and integers k_i , d_i , for $q^{2^i} \ge d_i k_i + 1$.
- We get a sequence of CFFs with increasing *n* and *d*.

Example

- Start with a 2-CFF(9,9) over \mathbb{F}_3
 - q = 3, d = 2, k = 1
- Now consider \mathbb{F}_9
 - $q^2 = 9$, $d_1 = 4$ and $k_1 = 2$ (since $9 \ge 4 \times 2 + 1$)
- We get a 2-CFF(9,9) embedded into a 4-CFF(81,729)

	0	1	2	x	x + 1	x + 2	2x	2x + 1	2x + 2	α	$\alpha + 1$	 $(2\alpha + 2)x^2 + (2\alpha + 2)x + 2\alpha + 2$
(0, 0)	1	0	0	1	0	0	1	0	0			
(0, 1)	0	1	O	0	1	0	0	1	0			
(0, 2)	0	0	1	0	0	1	0	0	1			
(1, 0)	1	0	0	0	0	1	0	1	0			
(1, 1)	0	1	0	1	0	0	0	0	1			
(1, 2)	0	0	1	0	1	0	1	0	0			
(2, 0)	1	0	0	0	1	0	0	0	1			
(2, 1)	0	1	0	0	0	1	1	0	0			
(2, 2)	0	0	1	1	0	0	0	1	0			
:												
$(2\alpha+2,2\alpha+2)$	0	0	0	1	0							

Many approaches with one construction

- Consider q^{2^i} , k_i , d_i , for $q^{2^i} \ge d_i k_i + 1$
 - Prioritize *d* increases (fix *k*)
 - Prioritize ratio increases (fix d)
 - Construct monotone families

Prioritize d increases

- Consider q^{2^i} , k_i , d_i , for $q^{2^i} \ge d_i k_i + 1$
- ullet Fix k and increase d_i to its maximum

$$q^{2^i} \ge d_i k + 1$$

•
$$d \approx \frac{n^{1/k+1}}{k}$$

Prioritizing d increases with fixed k = 2.

\overline{i}	q	k	d	n	t	n/t
0	4	2	1	64	12	5.33
1	16	2	7	4096	240	17.06
2	256	2	127	16777216	65280	257.00
3	65536	2	32767	281474976710656	4294901760	65537.00

Prioritize ratio increases

- Consider q^{2^i} , k_i , d_i , for $q^{2^i} \ge d_i k_i + 1$
- Fix d and increase k_i to its maximum

$$q^{2^i} \ge dk_i + 1$$

$$\rho(n) = \frac{n}{\log n}$$

Prioritizing *ratio* increases with fixed d = 2.

	i	q	k	d	n	t	n/t
_	0	4	1	2	16	12	1.33
	1	16	7	2	4294967296	240	17895697.07
	2	256	127	2	256^{128}	65280	2.75×10^{303}
	3	65536	32767	2	65536^{32768}	4294901760	6.04×10^{157816}

Construct monotone families

- Consider q^{2^i} , k_i , d_i , for $q^{2^i} \ge d_i k_i + 1$
- Fix d and k
 - Select specific blocks of rows
 - We get monotone families with increasing ratio (better than Hartung et al.*)

	0	1	2	x	x + 1	x + 2	2x	2x + 1	2x + 2	α	$\alpha + 1$	 $(2\alpha + 2)x^2 + (2\alpha + 2)x + 2\alpha + 2$
(0, 0)	1	0	0	1	0	0	1	0	0			
(0, 1)	0	1	O	0	1	O	0	1	O			
(0, 2)	0	O	1	0	0	1	0	0	1			
(1, 0)	1	O	O	O	O	1	0	1	O			
(1, 1)	0	1	O	1	O	O	0	0	1			
(1, 2)	O	O	1	O	1	0	1	0	O			
(2, 0)	1	O	O	O	1	0	0	0	1			
(2, 1)	O	1	O	O	O	1	1	0	O			
(2, 2)	0	O	1	1	0	0	0	1	0			
$(\mathbb{F}_3,\mathbb{F}_9\setminus\mathbb{F}_3)$						0						

^{*} Hartung, Kaidel, Koch, Koch, Rupp (PKC 2016)

Yes, we can build embedding CFFs!

- One construction* can be explored in various ways.
- Different parameter choices give us different properties.
- Applications can give us insights on new ideas.

k	d	$\rho(n)$	Feature
fixed	$d \sim rac{n^{1/(k+1)}}{k}$	$n^{1-rac{2}{k+1}}$	increasing d
increasing	fixed	$\frac{n}{\log n}$	optimal ratio
fixed	fixed	$n^{1-\frac{1}{k+1}}$	monotone

^{*} P. Erdős, P. Frankl and Z. Furedi, Families of finite sets in which no set is covered by the union of r others, Israel J. Math., 51 (1985), 79–89.

Gradual increase on n

Gradual increase on n

• Gradual increase on *n* via moderate increase of *d* and *k* to smooth out compression ratio.

$$q = 16, 256$$

 $1 \le k \le 3$
 $d = \log_4 n$

Future Work

- Can we have embedding families with more gradual increase of n and smoother compression ratio?
- Is there any other way of constructing embedding CFFs?
- Other aspects of CFFs to be explored*.
 - Mixed properties and applications.

^{*} Idalino, Moura. Structure-aware combinatorial group testing: a new method for pandemic screening. IWOCA (2022)

^{*} Idalino, Moura. Group testing and cover-free families on hypergraphs. (2024?)

Thank you!

Feliz Aniversário, Daniel!

